Orientation dependence of the nano-indentation behaviour of pure Tungsten

Coupling of nano-indentation and crystal plasticity finite element (CPFE) simulations is widely used to quantitatively probe the small-scale mechanical behaviour of materials. Earlier studies showed that CPFE can successfully reproduce the load-displacement curves and surface morphology for differen...

Full description

Bibliographic Details
Main Authors: Yu, H, Das, S, Karamched, P, Tarleton, E, Hofmann, F
Format: Journal article
Language:English
Published: Elsevier 2020
Description
Summary:Coupling of nano-indentation and crystal plasticity finite element (CPFE) simulations is widely used to quantitatively probe the small-scale mechanical behaviour of materials. Earlier studies showed that CPFE can successfully reproduce the load-displacement curves and surface morphology for different crystal orientations. Here, we report the orientation dependence of residual lattice strain patterns and dislocation structures in tungsten. For orientations with one or more Burgers vectors close to parallel to the sample surface, dislocation movement and residual lattice strains are confined to long, narrow channels. CPFE is unable to reproduce this behaviour, and our analysis reveals the responsible underlying mechanisms.