Scalable gaussian processes for characterizing multidimensional change surfaces
We present a scalable Gaussian process model for identifying and characterizing smooth multidimensional changepoints, and automatically learning changes in expressive covariance structure. We use Random Kitchen Sink features to exibly define a change surface in combination with expressive spectral m...
Autores principales: | Herlands, W, Wilson, A, Nickisch, H, Flaxman, S, Neill, D, van Panhuis, W, Xing, E |
---|---|
Formato: | Conference item |
Publicado: |
Journal of Machine Learning Research
2016
|
Ejemplares similares
-
Modulating scalable Gaussian processes for expressive statistical learning
por: Liu, Haitao, et al.
Publicado: (2022) -
Scalable inference and private co-training for Gaussian processes
por: Thomas, O
Publicado: (2017) -
Understanding and comparing scalable Gaussian process regression for big data
por: Liu, Haitao, et al.
Publicado: (2020) -
Revisiting K2-233 spectroscopic time-series with multidimensional Gaussian processes
por: Barragán, O, et al.
Publicado: (2023) -
Scalable Gaussian process inference with finite-data mean and variance guarantees
por: Huggins, Jonathan H., et al.
Publicado: (2020)