Partition-induced natural dualities for varieties of pseudo- complemented distributive lattices
A natural duality is obtained for each finitely generated variety Bn (n < ω) of distributive p-algebras. The duality for Bn is based on a schizophrenic object: P-1 in Bn is the algebra 2n ⊕ 1 which generates the variety and P-1 is a topological relational structure carrying the discrete topol...
Hlavní autoři: | Davey, B, Priestley, H |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
1993
|
Podobné jednotky
-
CONSTRUCTION OF SPACES DUAL TO PSEUDO-COMPLEMENTED DISTRIBUTIVE LATTICES
Autor: Priestley, H
Vydáno: (1975) -
Canonical Extensions and Discrete Dualities for Finitely Generated Varieties of Lattice-based Algebras
Autor: Davey, B, a další
Vydáno: (2012) -
Ordered Sets and Duality for Distributive Lattices
Autor: Priestley, H
Vydáno: (1984) -
OPTIMAL NATURAL DUALITIES
Autor: Davey, B, a další
Vydáno: (1993) -
Natural dualities in partnership
Autor: Davey, B, a další
Vydáno: (2012)