Time variability of AGN and heating of cooling flows

There is increasing evidence that AGN mechanical feedback is important in the energetics of cooling flows in galaxies and galaxy clusters. We investigate the implications of the variability of AGN mechanical luminosity L_m on observations of cooling flows and radio galaxies in general. It is natural...

Description complète

Détails bibliographiques
Auteurs principaux: Nipoti, C, Binney, J
Format: Journal article
Langue:English
Publié: 2005
Description
Résumé:There is increasing evidence that AGN mechanical feedback is important in the energetics of cooling flows in galaxies and galaxy clusters. We investigate the implications of the variability of AGN mechanical luminosity L_m on observations of cooling flows and radio galaxies in general. It is natural to assume that l=ln(L_m/L_x) is a Gaussian process. Then L_m will be log-normally distributed at fixed cooling luminosity L_x, and the variance in a measure of L_m will increase with the time-resolution of the measure. We test the consistency of these predictions with existing data. These tests hinge on the power spectrum of l(t). Monitoring of Seyfert galaxies combined with estimates of the duty cycle of quasars imply flicker noise spectra, similar to those of microquasars. We combine a sample of sources in cooling flows that have cavities with the assumption that the average mechanical luminosity of the AGN equals L_x. Given that the mechanical luminosities are characterized by flicker noise, we find that their spectral amplitudes lie between the estimated amplitudes of quasars and the measured values for the radio luminosities of microquasars. The model together with the observation that powerful radio galaxies lie within a narrow range in optical luminosity, predicts the luminosity function of radio galaxies, in agreement with observations. Forthcoming radio surveys will test the prediction that the luminosity function turns over at about the smallest luminosities so far probed. [Abridged]