Kernel-based orthogonal projections to latent structures (K-OPLS)

The orthogonal projections to latent structures (OPLS) method has been successfully applied in various chemical and biological systems for modeling and interpretation of linear relationships between a descriptor matrix and response matrix. A kernel-based reformulation of the original OPLS algorithm...

Full description

Bibliographic Details
Main Authors: Rantalainen, M, Bylesjoe, M, Cloarec, O, Nicholson, J, Holmes, E, Trygg, J
Format: Journal article
Language:English
Published: 2007
Description
Summary:The orthogonal projections to latent structures (OPLS) method has been successfully applied in various chemical and biological systems for modeling and interpretation of linear relationships between a descriptor matrix and response matrix. A kernel-based reformulation of the original OPLS algorithm is presented where the kernel Gram matrix is utilized as a replacement for the descriptor matrix. This enables usage of the 'kernel trick' to efficiently transform the data into a higher-dimensional feature space where predictive and response-orthogonal components are calculated. This strategy has the capacity to improve predictive performance considerably in situations where strong non-linear relationships exist between descriptor and response variables while retaining the OPLS model framework. We put particular focus on describing properties of the rearranged algorithm in relation to the original OPLS algorithm. Four separate problems, two simulated and two real spectroscopic data sets, are employed to illustrate how the algorithm enables separate modeling of predictive and response-orthogonal variation in the feature space. This separation can be highly beneficial for model interpretation purposes while providing a flexible framework for supervised regression. Copyright © 2007 John Wiley and Sons, Ltd.