Coulomb-driven band unflattening suppresses K-phonon pairing in moire graphene

It is a matter of current debate whether the gate-tunable superconductivity in twisted bilayer graphene is phonon-mediated or arises from electron-electron interactions. The recent observation of the strong coupling of electrons to so-called K-phonon modes in angle-resolved photoemission spectroscop...

Full description

Bibliographic Details
Main Authors: Wagner, G, Kwan, YH, Bultinck, N, Simon, S, Parameswaran, SA
Format: Journal article
Language:English
Published: American Physical Society 2024
Description
Summary:It is a matter of current debate whether the gate-tunable superconductivity in twisted bilayer graphene is phonon-mediated or arises from electron-electron interactions. The recent observation of the strong coupling of electrons to so-called K-phonon modes in angle-resolved photoemission spectroscopy experiments has resuscitated early proposals that K-phonons drive superconductivity. We show that the bandwidth-enhancing effect of interactions drastically weakens both the intrinsic susceptibility towards pairing as well as the screening of Coulomb repulsion that is essential for the phonon attraction to dominate at low temperature. This rules out purely K-phonon-mediated superconductivity with the observed transition temperature of ∼1 K. We conclude that the unflattening of bands by Coulomb interactions challenges any purely phonon-driven pairing mechanism, and must be addressed by a successful theory of superconductivity in moiré graphene