Distributed Maximum Likelihood for Simultaneous Self-Localization and Tracking in Sensor Networks
We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneou...
Päätekijät: | Kantas, N, Singh, S, Doucet, A |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
2012
|
Samankaltaisia teoksia
-
A distributed recursive maximum likelihood implementation for sensor registration
Tekijä: Kantas, N, et al.
Julkaistu: (2006) -
Distributed Online self-localization and tracking in sensor networks
Tekijä: Kantas, N, et al.
Julkaistu: (2007) -
Distributed self localisation of sensor networks using particle methods
Tekijä: Kantas, N, et al.
Julkaistu: (2006) -
Gradient-free maximum likelihood parameter estimation with particle filters
Tekijä: Poyiadjis, G, et al.
Julkaistu: (2006) -
A Distance-Based Maximum Likelihood Estimation Method for Sensor Localization in Wireless Sensor Networks
Tekijä: Jing Xu, et al.
Julkaistu: (2016-04-01)