Distributed Maximum Likelihood for Simultaneous Self-Localization and Tracking in Sensor Networks
We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneou...
Auteurs principaux: | Kantas, N, Singh, S, Doucet, A |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2012
|
Documents similaires
-
A distributed recursive maximum likelihood implementation for sensor registration
par: Kantas, N, et autres
Publié: (2006) -
Distributed Online self-localization and tracking in sensor networks
par: Kantas, N, et autres
Publié: (2007) -
Distributed self localisation of sensor networks using particle methods
par: Kantas, N, et autres
Publié: (2006) -
Gradient-free maximum likelihood parameter estimation with particle filters
par: Poyiadjis, G, et autres
Publié: (2006) -
A Distance-Based Maximum Likelihood Estimation Method for Sensor Localization in Wireless Sensor Networks
par: Jing Xu, et autres
Publié: (2016-04-01)