Distributed Maximum Likelihood for Simultaneous Self-Localization and Tracking in Sensor Networks
We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneou...
Główni autorzy: | Kantas, N, Singh, S, Doucet, A |
---|---|
Format: | Journal article |
Język: | English |
Wydane: |
2012
|
Podobne zapisy
-
A distributed recursive maximum likelihood implementation for sensor registration
od: Kantas, N, i wsp.
Wydane: (2006) -
Distributed Online self-localization and tracking in sensor networks
od: Kantas, N, i wsp.
Wydane: (2007) -
Distributed self localisation of sensor networks using particle methods
od: Kantas, N, i wsp.
Wydane: (2006) -
Gradient-free maximum likelihood parameter estimation with particle filters
od: Poyiadjis, G, i wsp.
Wydane: (2006) -
A Distance-Based Maximum Likelihood Estimation Method for Sensor Localization in Wireless Sensor Networks
od: Jing Xu, i wsp.
Wydane: (2016-04-01)