Distributed Maximum Likelihood for Simultaneous Self-Localization and Tracking in Sensor Networks
We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneou...
Главные авторы: | Kantas, N, Singh, S, Doucet, A |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
2012
|
Схожие документы
-
A distributed recursive maximum likelihood implementation for sensor registration
по: Kantas, N, и др.
Опубликовано: (2006) -
Distributed Online self-localization and tracking in sensor networks
по: Kantas, N, и др.
Опубликовано: (2007) -
Distributed self localisation of sensor networks using particle methods
по: Kantas, N, и др.
Опубликовано: (2006) -
Gradient-free maximum likelihood parameter estimation with particle filters
по: Poyiadjis, G, и др.
Опубликовано: (2006) -
A Distance-Based Maximum Likelihood Estimation Method for Sensor Localization in Wireless Sensor Networks
по: Jing Xu, и др.
Опубликовано: (2016-04-01)