Distributed Maximum Likelihood for Simultaneous Self-Localization and Tracking in Sensor Networks
We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneou...
Main Authors: | Kantas, N, Singh, S, Doucet, A |
---|---|
格式: | Journal article |
语言: | English |
出版: |
2012
|
相似书籍
-
A distributed recursive maximum likelihood implementation for sensor registration
由: Kantas, N, et al.
出版: (2006) -
Distributed Online self-localization and tracking in sensor networks
由: Kantas, N, et al.
出版: (2007) -
Distributed self localisation of sensor networks using particle methods
由: Kantas, N, et al.
出版: (2006) -
Gradient-free maximum likelihood parameter estimation with particle filters
由: Poyiadjis, G, et al.
出版: (2006) -
A Distance-Based Maximum Likelihood Estimation Method for Sensor Localization in Wireless Sensor Networks
由: Jing Xu, et al.
出版: (2016-04-01)