Application of machine learning techniques to tuberculosis drug resistance analysis
<strong>Motivation</strong> Timely identification of Mycobacterium tuberculosis (MTB) resistance to existing drugs is vital to decrease mortality and prevent the amplification of existing antibiotic resistance. Machine learning methods have been widely applied for timely predicting resis...
Glavni autori: | Kouchaki, S, Yang, Y, Walker, T, Walker, A, Wilson, D, Peto, T, Crook, D, Clifton, D, Cryptic Consortium |
---|---|
Format: | Journal article |
Jezik: | English |
Izdano: |
Oxford University Press
2018
|
Slični predmeti
-
Multi-label random forest model for tuberculosis drug resistance classification and mutation ranking
od: Kouchaki, S, i dr.
Izdano: (2020) -
An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction
od: Yang, Y, i dr.
Izdano: (2021) -
Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data
od: Yang, Y, i dr.
Izdano: (2017) -
DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis
od: Yang, Y, i dr.
Izdano: (2019) -
Quantitative drug susceptibility testing for Mycobacterium tuberculosis using unassembled sequencing data and machine learning
od: The CRyPTIC consortium
Izdano: (2024)