Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval-force relations: a modelling study.

We hypothesize that slow inactivation of Ca2+/calmodulin-dependent kinase II (CaMKII) and its modulatory effect on sarcoplasmic reticulum (SR) Ca2+ handling are important for various interval-force (I-F) relations, in particular for the beat interval dependency in transient alternans during the deca...

Full description

Bibliographic Details
Main Authors: Iribe, G, Kohl, P, Noble, D
Format: Journal article
Language:English
Published: 2006
_version_ 1826287548227387392
author Iribe, G
Kohl, P
Noble, D
author_facet Iribe, G
Kohl, P
Noble, D
author_sort Iribe, G
collection OXFORD
description We hypothesize that slow inactivation of Ca2+/calmodulin-dependent kinase II (CaMKII) and its modulatory effect on sarcoplasmic reticulum (SR) Ca2+ handling are important for various interval-force (I-F) relations, in particular for the beat interval dependency in transient alternans during the decay of post-extrasystolic potentiation. We have developed a mathematical model of a single cardiomyocyte to integrate various I-F relations, including alternans, by incorporating a conceptual CaMKII kinetics model into the SR Ca2+ handling model. Our model integrates I-F relations, such as the beat interval-dependent twitch force duration, restitution and potentiation, positive staircase phenomenon and alternans. We found that CaMKII affects more or less all I-F relations, and it is a key factor for integration of the various I-F relations in our model. Alternans arises, in the model, out of a steep relation between SR Ca2+ load and release, owing to SR load-dependent changes in the releasability of Ca2+ via the ryanodine receptor. Beat interval-dependent CaMKII activity, owing to its kinetic properties and amplifying effect on SR Ca2+ load dependency of Ca2+ release, replicated the beat interval dependency of alternans, as observed experimentally. Additionally, our model enabled reproduction of the effects of various interventions on alternans, such as the slowing or accelerating of Ca2+ release and/or uptake. We conclude that a slow time-dependent factor, represented in the model by CaMKII, is important for the integration of I-F relations, including alternans, and that our model offers a useful tool for further analysis of the roles of integrative Ca2+ handling in myocardial I-F relations.
first_indexed 2024-03-07T02:00:20Z
format Journal article
id oxford-uuid:9d286aca-7ffb-4836-af28-0d8052dad170
institution University of Oxford
language English
last_indexed 2024-03-07T02:00:20Z
publishDate 2006
record_format dspace
spelling oxford-uuid:9d286aca-7ffb-4836-af28-0d8052dad1702022-03-27T00:40:54ZModulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval-force relations: a modelling study.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:9d286aca-7ffb-4836-af28-0d8052dad170EnglishSymplectic Elements at Oxford2006Iribe, GKohl, PNoble, DWe hypothesize that slow inactivation of Ca2+/calmodulin-dependent kinase II (CaMKII) and its modulatory effect on sarcoplasmic reticulum (SR) Ca2+ handling are important for various interval-force (I-F) relations, in particular for the beat interval dependency in transient alternans during the decay of post-extrasystolic potentiation. We have developed a mathematical model of a single cardiomyocyte to integrate various I-F relations, including alternans, by incorporating a conceptual CaMKII kinetics model into the SR Ca2+ handling model. Our model integrates I-F relations, such as the beat interval-dependent twitch force duration, restitution and potentiation, positive staircase phenomenon and alternans. We found that CaMKII affects more or less all I-F relations, and it is a key factor for integration of the various I-F relations in our model. Alternans arises, in the model, out of a steep relation between SR Ca2+ load and release, owing to SR load-dependent changes in the releasability of Ca2+ via the ryanodine receptor. Beat interval-dependent CaMKII activity, owing to its kinetic properties and amplifying effect on SR Ca2+ load dependency of Ca2+ release, replicated the beat interval dependency of alternans, as observed experimentally. Additionally, our model enabled reproduction of the effects of various interventions on alternans, such as the slowing or accelerating of Ca2+ release and/or uptake. We conclude that a slow time-dependent factor, represented in the model by CaMKII, is important for the integration of I-F relations, including alternans, and that our model offers a useful tool for further analysis of the roles of integrative Ca2+ handling in myocardial I-F relations.
spellingShingle Iribe, G
Kohl, P
Noble, D
Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval-force relations: a modelling study.
title Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval-force relations: a modelling study.
title_full Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval-force relations: a modelling study.
title_fullStr Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval-force relations: a modelling study.
title_full_unstemmed Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval-force relations: a modelling study.
title_short Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca2+ handling and interval-force relations: a modelling study.
title_sort modulatory effect of calmodulin dependent kinase ii camkii on sarcoplasmic reticulum ca2 handling and interval force relations a modelling study
work_keys_str_mv AT iribeg modulatoryeffectofcalmodulindependentkinaseiicamkiionsarcoplasmicreticulumca2handlingandintervalforcerelationsamodellingstudy
AT kohlp modulatoryeffectofcalmodulindependentkinaseiicamkiionsarcoplasmicreticulumca2handlingandintervalforcerelationsamodellingstudy
AT nobled modulatoryeffectofcalmodulindependentkinaseiicamkiionsarcoplasmicreticulumca2handlingandintervalforcerelationsamodellingstudy