Integrated redox sensor and effector functions for tetrahydrobiopterin- and glutathionylation-dependent endothelial nitric-oxide synthase uncoupling.
Endothelial nitric-oxide synthase (eNOS) is a critical regulator of vascular homeostasis by generation of NO that is dependent on the cofactor tetrahydrobiopterin (BH4). When BH4 availability is limiting, eNOS becomes "uncoupled," resulting in superoxide production in place of NO. Recent e...
Autori principali: | Crabtree, M, Brixey, R, Batchelor, H, Hale, AB, Channon, K |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
2013
|
Documenti analoghi
Documenti analoghi
-
Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency.
di: Crabtree, M, et al.
Pubblicazione: (2011) -
Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency
di: Crabtree, M, et al.
Pubblicazione: (2011) -
Tetrahydrobiopterin Prevents Lung Ischemia/reperfusion-Induced Uncoupling of Endothelial Nitric Oxide Synthase
di: Juni, R, et al.
Pubblicazione: (2012) -
Endothelial tetrahydrobiopterin deficiency accelerates atherosclerotic progression by nitric oxide synthase uncoupling
di: Khoo, J, et al.
Pubblicazione: (2005) -
Tetrahydrobiopterin- and glutathionylation-dependent regulation of eNOS coupling: Relationships revealed by eNOS glutathionylation mutants in cells with tet-regulated GTP cyclohydrolase I expression
di: Crabtree, M, et al.
Pubblicazione: (2012)