Modelling cardiac motion via spatio-temporal graph convolutional networks to boost the diagnosis of heart conditions
We present a novel spatio-temporal graph convolutional networks (ST-GCN) approach to learn spatio-temporal patterns of left ventricular (LV) motion in cardiac MR cine images for improving the characterization of heart conditions. Specifically, a novel GCN architecture is used, where the sample nodes...
Main Authors: | Lu, P, Bai, W, Rueckert, D, Noble, JA |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado em: |
Springer
2021
|
Registos relacionados
-
Dynamic spatio-temporal graph convolutional networks for cardiac motion analysis
Por: Lu, P, et al.
Publicado em: (2021) -
Multiscale graph convolutional networks for cardiac motion analysis
Por: Lu, P, et al.
Publicado em: (2021) -
Going deeper into cardiac motion analysis to model fine spatio-temporal features
Por: Lu, P, et al.
Publicado em: (2020) -
Dynamic Spatio-Temporal Graph Convolutional Networks
Por: Tell, Max R.
Publicado em: (2022) -
Learning spatio-temporal aggregation for fetal heart analysis in ultrasound video
Por: Patra, A, et al.
Publicado em: (2017)