Robust full Bayesian learning for radial basis networks.
We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...
Autors principals: | Andrieu, C, de Freitas, N, Doucet, A |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
2001
|
Ítems similars
-
Robust Full Bayesian Learning for Radial Basis Networks
per: Andrieu, C, et al.
Publicat: (2001) -
Robust full Bayesian methods for neural networks
per: Andrieu, C, et al.
Publicat: (2000) -
Sequential MCMC for Bayesian model selection
per: Andrieu, C, et al.
Publicat: (1999) -
Bayesian radial basis functions of variable dimension
per: Holmes, C, et al.
Publicat: (1998) -
Robust neural network predictors using radial basis functions
per: Siti Hajar Salleh,
Publicat: (1998)