Robust full Bayesian learning for radial basis networks.
We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...
Main Authors: | Andrieu, C, de Freitas, N, Doucet, A |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2001
|
Similar Items
-
Robust Full Bayesian Learning for Radial Basis Networks
by: Andrieu, C, et al.
Published: (2001) -
Robust full Bayesian methods for neural networks
by: Andrieu, C, et al.
Published: (2000) -
Sequential MCMC for Bayesian model selection
by: Andrieu, C, et al.
Published: (1999) -
Bayesian radial basis functions of variable dimension
by: Holmes, C, et al.
Published: (1998) -
Robust neural network predictors using radial basis functions
by: Siti Hajar Salleh,
Published: (1998)