Robust full Bayesian learning for radial basis networks.
We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...
मुख्य लेखकों: | Andrieu, C, de Freitas, N, Doucet, A |
---|---|
स्वरूप: | Journal article |
भाषा: | English |
प्रकाशित: |
2001
|
समान संसाधन
-
Robust Full Bayesian Learning for Radial Basis Networks
द्वारा: Andrieu, C, और अन्य
प्रकाशित: (2001) -
Robust full Bayesian methods for neural networks
द्वारा: Andrieu, C, और अन्य
प्रकाशित: (2000) -
Sequential MCMC for Bayesian model selection
द्वारा: Andrieu, C, और अन्य
प्रकाशित: (1999) -
Bayesian radial basis functions of variable dimension
द्वारा: Holmes, C, और अन्य
प्रकाशित: (1998) -
Robust neural network predictors using radial basis functions
द्वारा: Siti Hajar Salleh,
प्रकाशित: (1998)