Robust full Bayesian learning for radial basis networks.
We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...
Main Authors: | Andrieu, C, de Freitas, N, Doucet, A |
---|---|
格式: | Journal article |
语言: | English |
出版: |
2001
|
相似书籍
-
Robust Full Bayesian Learning for Radial Basis Networks
由: Andrieu, C, et al.
出版: (2001) -
Robust full Bayesian methods for neural networks
由: Andrieu, C, et al.
出版: (2000) -
Sequential MCMC for Bayesian model selection
由: Andrieu, C, et al.
出版: (1999) -
Bayesian radial basis functions of variable dimension
由: Holmes, C, et al.
出版: (1998) -
Robust neural network predictors using radial basis functions
由: Siti Hajar Salleh,
出版: (1998)