Robust full Bayesian learning for radial basis networks.

We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...

Description complète

Détails bibliographiques
Auteurs principaux: Andrieu, C, de Freitas, N, Doucet, A
Format: Journal article
Langue:English
Publié: 2001