Robust full Bayesian learning for radial basis networks.

We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Andrieu, C, de Freitas, N, Doucet, A
Formato: Journal article
Lenguaje:English
Publicado: 2001