Robust full Bayesian learning for radial basis networks.
We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...
Autori principali: | , , |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
2001
|