The unreasonable effectiveness of tree-based theory for networks with clustering.

We demonstrate that a tree-based theory for various dynamical processes operating on static, undirected networks yields extremely accurate results for several networks with high levels of clustering. We find that such a theory works well as long as the mean intervertex distance ℓ is sufficiently sma...

Full description

Bibliographic Details
Main Authors: Melnik, S, Hackett, A, Porter, M, Mucha, P, Gleeson, J
Format: Journal article
Language:English
Published: 2011
Description
Summary:We demonstrate that a tree-based theory for various dynamical processes operating on static, undirected networks yields extremely accurate results for several networks with high levels of clustering. We find that such a theory works well as long as the mean intervertex distance ℓ is sufficiently small--that is, as long as it is close to the value of ℓ in a random network with negligible clustering and the same degree-degree correlations. We support this hypothesis numerically using both real-world networks from various domains and several classes of synthetic clustered networks. We present analytical calculations that further support our claim that tree-based theories can be accurate for clustered networks, provided that the networks are "sufficiently small" worlds.