Hybrid models with deep and invertible features
We propose a neural hybrid model consisting of a linear model defined on a set of features computed by a deep, invertible transformation (i.e. a normalizing flow). An attractive property of our model is that both p(features), the density of the features, and p(targets|features), the predictive distr...
Päätekijät: | Eric, N, Matsukawa, A, Teh, Y, Gorur, D, Lakshminarayanan, B |
---|---|
Aineistotyyppi: | Conference item |
Julkaistu: |
Proceedings of Machine Learning Research
2019
|
Samankaltaisia teoksia
-
Do deep generative models know what they don't know?
Tekijä: Nalisnick, E, et al.
Julkaistu: (2019) -
Infinite hierarchical hidden Markov models
Tekijä: Heller, K, et al.
Julkaistu: (2009) -
Indian buffet processes with power-law behavior
Tekijä: Teh, Y, et al.
Julkaistu: (2009) -
Topology for hybrid trinary multilevel inverter /
Tekijä: 195523 Chan, Jhan Yhee, et al.
Julkaistu: (2005) -
Stick-breaking construction for the Indian buffet process
Tekijä: Teh, Y, et al.
Julkaistu: (2007)