Powers of paths in tournaments
In this short note we prove that every tournament contains the k-th power of a directed path of linear length. This improves upon recent results of Yuster and of Girão. We also give a complete solution for this problem when k = 2, showing that there is always a square of a directed path of length [2...
Päätekijät: | Draganić, N, Dross, F, Fox, J, Girão, A, Havet, F, Korándi, D, Lochet, W, Correia, DM, Scott, A, Sudakov, B |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Cambridge University Press
2021
|
Samankaltaisia teoksia
-
Oriented Hamiltonian cycles in tournaments
Tekijä: Havet, F
Julkaistu: (2000) -
Disjoint paths in tournaments
Tekijä: Chudnovsky, M, et al.
Julkaistu: (2014) -
Flashes and rainbows in tournaments
Tekijä: Girão, A, et al.
Julkaistu: (2024) -
Disjoint paths in unions of tournaments
Tekijä: Chudnovsky, M, et al.
Julkaistu: (2018) -
Tournaments and colouring
Tekijä: Berger, E, et al.
Julkaistu: (2013)