Powers of paths in tournaments
In this short note we prove that every tournament contains the k-th power of a directed path of linear length. This improves upon recent results of Yuster and of Girão. We also give a complete solution for this problem when k = 2, showing that there is always a square of a directed path of length [2...
Hoofdauteurs: | Draganić, N, Dross, F, Fox, J, Girão, A, Havet, F, Korándi, D, Lochet, W, Correia, DM, Scott, A, Sudakov, B |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
Cambridge University Press
2021
|
Gelijkaardige items
-
Oriented Hamiltonian cycles in tournaments
door: Havet, F
Gepubliceerd in: (2000) -
Disjoint paths in tournaments
door: Chudnovsky, M, et al.
Gepubliceerd in: (2014) -
Flashes and rainbows in tournaments
door: Girão, A, et al.
Gepubliceerd in: (2024) -
Disjoint paths in unions of tournaments
door: Chudnovsky, M, et al.
Gepubliceerd in: (2018) -
Tournaments and colouring
door: Berger, E, et al.
Gepubliceerd in: (2013)