Social and spatial effects on genetic variation between foraging flocks in a wild bird population

Social interactions are rarely random. In some instances animals exhibit homophily or heterophily, the tendency to interact with similar or dissimilar conspecifics respectively. Genetic homophily and heterophily influence the evolutionary dynamics of populations, because they potentially affect s...

Full description

Bibliographic Details
Main Authors: Radersma, R, Garroway, C, Santure, A, De Cauwer, I, Farine, D, Slate, J, Sheldon, B
Format: Journal article
Published: John Wiley & Sons Ltd 2017
_version_ 1797085529939902464
author Radersma, R
Garroway, C
Santure, A
De Cauwer, I
Farine, D
Slate, J
Sheldon, B
author_facet Radersma, R
Garroway, C
Santure, A
De Cauwer, I
Farine, D
Slate, J
Sheldon, B
author_sort Radersma, R
collection OXFORD
description Social interactions are rarely random. In some instances animals exhibit homophily or heterophily, the tendency to interact with similar or dissimilar conspecifics respectively. Genetic homophily and heterophily influence the evolutionary dynamics of populations, because they potentially affect sexual and social selection. Here we investigate the link between social interactions and allele frequencies in foraging flocks of great tits (Parus major) over three consecutive years. We constructed co-occurrence networks which explicitly described the splitting and merging of 85,602 flocks through time (fission-fusion dynamics), at 60 feeding sites. Of the 1711 birds in those flocks we genotyped 962 individuals at 4701 autosomal single- nucleotide polymorphisms (SNPs). By combining genome-wide genotyping with repeated field observations of the same individuals we were able to investigate links between social structure and allele frequencies at a much finer scale than was previously possible. We explicitly accounted for potential spatial effects underlying genetic structure at the population level. We modelled social structure and spatial configuration of great tit fission-fusion dynamics with eigenvector maps. Variance partitioning revealed that allele frequencies were strongly affected by group fidelity (explaining 27-45% of variance) as individuals tended to maintain associations with the same conspecifics. These conspecifics were genetically more dissimilar than expected, shown by genome-wide heterophily for pure social (i.e. space-independent) grouping preferences. Genome-wide homophily was linked to spatial configuration, indicating spatial segregation of genotypes. We did not find evidence for homophily or heterophily for putative socially relevant candidate genes or any other SNP markers. Together, these results demonstrate the importance of distinguishing social and spatial processes in determining population structure.
first_indexed 2024-03-07T02:09:59Z
format Journal article
id oxford-uuid:a04c925b-d117-48fd-a79f-edef79d7a965
institution University of Oxford
last_indexed 2024-03-07T02:09:59Z
publishDate 2017
publisher John Wiley & Sons Ltd
record_format dspace
spelling oxford-uuid:a04c925b-d117-48fd-a79f-edef79d7a9652022-03-27T02:04:25ZSocial and spatial effects on genetic variation between foraging flocks in a wild bird populationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a04c925b-d117-48fd-a79f-edef79d7a965Symplectic Elements at OxfordJohn Wiley & Sons Ltd2017Radersma, RGarroway, CSanture, ADe Cauwer, IFarine, DSlate, JSheldon, BSocial interactions are rarely random. In some instances animals exhibit homophily or heterophily, the tendency to interact with similar or dissimilar conspecifics respectively. Genetic homophily and heterophily influence the evolutionary dynamics of populations, because they potentially affect sexual and social selection. Here we investigate the link between social interactions and allele frequencies in foraging flocks of great tits (Parus major) over three consecutive years. We constructed co-occurrence networks which explicitly described the splitting and merging of 85,602 flocks through time (fission-fusion dynamics), at 60 feeding sites. Of the 1711 birds in those flocks we genotyped 962 individuals at 4701 autosomal single- nucleotide polymorphisms (SNPs). By combining genome-wide genotyping with repeated field observations of the same individuals we were able to investigate links between social structure and allele frequencies at a much finer scale than was previously possible. We explicitly accounted for potential spatial effects underlying genetic structure at the population level. We modelled social structure and spatial configuration of great tit fission-fusion dynamics with eigenvector maps. Variance partitioning revealed that allele frequencies were strongly affected by group fidelity (explaining 27-45% of variance) as individuals tended to maintain associations with the same conspecifics. These conspecifics were genetically more dissimilar than expected, shown by genome-wide heterophily for pure social (i.e. space-independent) grouping preferences. Genome-wide homophily was linked to spatial configuration, indicating spatial segregation of genotypes. We did not find evidence for homophily or heterophily for putative socially relevant candidate genes or any other SNP markers. Together, these results demonstrate the importance of distinguishing social and spatial processes in determining population structure.
spellingShingle Radersma, R
Garroway, C
Santure, A
De Cauwer, I
Farine, D
Slate, J
Sheldon, B
Social and spatial effects on genetic variation between foraging flocks in a wild bird population
title Social and spatial effects on genetic variation between foraging flocks in a wild bird population
title_full Social and spatial effects on genetic variation between foraging flocks in a wild bird population
title_fullStr Social and spatial effects on genetic variation between foraging flocks in a wild bird population
title_full_unstemmed Social and spatial effects on genetic variation between foraging flocks in a wild bird population
title_short Social and spatial effects on genetic variation between foraging flocks in a wild bird population
title_sort social and spatial effects on genetic variation between foraging flocks in a wild bird population
work_keys_str_mv AT radersmar socialandspatialeffectsongeneticvariationbetweenforagingflocksinawildbirdpopulation
AT garrowayc socialandspatialeffectsongeneticvariationbetweenforagingflocksinawildbirdpopulation
AT santurea socialandspatialeffectsongeneticvariationbetweenforagingflocksinawildbirdpopulation
AT decauweri socialandspatialeffectsongeneticvariationbetweenforagingflocksinawildbirdpopulation
AT farined socialandspatialeffectsongeneticvariationbetweenforagingflocksinawildbirdpopulation
AT slatej socialandspatialeffectsongeneticvariationbetweenforagingflocksinawildbirdpopulation
AT sheldonb socialandspatialeffectsongeneticvariationbetweenforagingflocksinawildbirdpopulation