Stop reasoning! When multimodal LLMs with chain-of-thought reasoning meets adversarial images
Recently, Multimodal LLMs (MLLMs) have shown a great ability to understand images. However, like traditional vision models, they are still vulnerable to adversarial images. Meanwhile, Chain-of-Thought (CoT) reasoning has been widely explored on MLLMs, which not only improves model’s performance, but...
Huvudupphovsmän: | Wang, Z, Han, Z, Chen, S, Xue, F, Ding, Z, Xiao, X, Tresp, V, Torr, P, Gu, J |
---|---|
Materialtyp: | Conference item |
Språk: | English |
Publicerad: |
IEEE
2024
|
Liknande verk
-
When LLMs meet cybersecurity: a systematic literature review
av: Jie Zhang, et al.
Publicerad: (2025-02-01) -
Adversarial Prompt Transformation for Systematic
Jailbreaks of LLMs
av: Awoufack, Kevin E.
Publicerad: (2024) -
SelfCheck: using LLMs to zero-shot check their own step-by-step reasoning
av: Miao, N, et al.
Publicerad: (2024) -
Philosophy, Adversarial Argumentation, and Embattled Reason
av: Phyllis Rooney
Publicerad: (2010-08-01) -
A comparison of chain-of-thought reasoning strategies across datasets and models
av: Konstantin Hebenstreit, et al.
Publicerad: (2024-04-01)