The importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane

Metal sintering and carbon deposition are acknowledged to be the foremost critical issues in the important energy storage process of high temperature Dry Reforming of Methane (DRM). For that process, so-called “core-shell catalysts” have exhibited outstanding catalytic performance. However, the intr...

Full description

Bibliographic Details
Main Authors: Wang, C, Jie, X, Qiu, Y, Zhao, Y, Al-Megren, HA, Alshihri, S, Edwards, PP, Xiao, T
Format: Journal article
Language:English
Published: Elsevier 2019
_version_ 1826288247632822272
author Wang, C
Jie, X
Qiu, Y
Zhao, Y
Al-Megren, HA
Alshihri, S
Edwards, PP
Xiao, T
author_facet Wang, C
Jie, X
Qiu, Y
Zhao, Y
Al-Megren, HA
Alshihri, S
Edwards, PP
Xiao, T
author_sort Wang, C
collection OXFORD
description Metal sintering and carbon deposition are acknowledged to be the foremost critical issues in the important energy storage process of high temperature Dry Reforming of Methane (DRM). For that process, so-called “core-shell catalysts” have exhibited outstanding catalytic performance. However, the intrinsic confined geometric space of the host core-shell structure not only inevitably limits the ability of the catalyst system to facilitate the critical rapid infusion and diffusion of reacting gases, but also enhances the accompanying conversion of carbon intermediates to inert, catalyst-deactivating carbonaceous deposits under high-space-velocity conditions. Herein, we present a study highlighting the importance of the inner cavity space, now of a quasi-zero-dimensional, tubular, yolk-shell structured Ni@SiO2 nanocapsule catalyst, in the DRM process. The tubular yolk-shell structured Ni@SiO2 nanocapsule catalysts having controlled inner cavities (5.0–13.0 nm × 5.0–50.0 nm dimensions) were synthesised via a water-in-oil micro-emulsion method by employing different aging times (i.e. 3 h, 6 h and 12 h). Compared with corresponding Ni@SiO2 nanosphere catalysts, the tubular nanocapsule catalysts displayed both excellent catalyst activity, stability, and (metal) anti-sintering ability with, equally important, negligible carbon deposition during the operating DRM process under high space velocity conditions (60 L g−1 h−1), most relevant for application in real industrial processes.
first_indexed 2024-03-07T02:10:50Z
format Journal article
id oxford-uuid:a095d9e4-11af-4064-afcf-3e1cb0bd177b
institution University of Oxford
language English
last_indexed 2024-03-07T02:10:50Z
publishDate 2019
publisher Elsevier
record_format dspace
spelling oxford-uuid:a095d9e4-11af-4064-afcf-3e1cb0bd177b2022-03-27T02:06:36ZThe importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methaneJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a095d9e4-11af-4064-afcf-3e1cb0bd177bEnglishSymplectic ElementsElsevier2019Wang, CJie, XQiu, YZhao, YAl-Megren, HAAlshihri, SEdwards, PPXiao, TMetal sintering and carbon deposition are acknowledged to be the foremost critical issues in the important energy storage process of high temperature Dry Reforming of Methane (DRM). For that process, so-called “core-shell catalysts” have exhibited outstanding catalytic performance. However, the intrinsic confined geometric space of the host core-shell structure not only inevitably limits the ability of the catalyst system to facilitate the critical rapid infusion and diffusion of reacting gases, but also enhances the accompanying conversion of carbon intermediates to inert, catalyst-deactivating carbonaceous deposits under high-space-velocity conditions. Herein, we present a study highlighting the importance of the inner cavity space, now of a quasi-zero-dimensional, tubular, yolk-shell structured Ni@SiO2 nanocapsule catalyst, in the DRM process. The tubular yolk-shell structured Ni@SiO2 nanocapsule catalysts having controlled inner cavities (5.0–13.0 nm × 5.0–50.0 nm dimensions) were synthesised via a water-in-oil micro-emulsion method by employing different aging times (i.e. 3 h, 6 h and 12 h). Compared with corresponding Ni@SiO2 nanosphere catalysts, the tubular nanocapsule catalysts displayed both excellent catalyst activity, stability, and (metal) anti-sintering ability with, equally important, negligible carbon deposition during the operating DRM process under high space velocity conditions (60 L g−1 h−1), most relevant for application in real industrial processes.
spellingShingle Wang, C
Jie, X
Qiu, Y
Zhao, Y
Al-Megren, HA
Alshihri, S
Edwards, PP
Xiao, T
The importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane
title The importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane
title_full The importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane
title_fullStr The importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane
title_full_unstemmed The importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane
title_short The importance of inner cavity space within Ni@SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane
title_sort importance of inner cavity space within ni sio2 nanocapsule catalysts for excellent coking resistance in the high space velocity dry reforming of methane
work_keys_str_mv AT wangc theimportanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT jiex theimportanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT qiuy theimportanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT zhaoy theimportanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT almegrenha theimportanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT alshihris theimportanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT edwardspp theimportanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT xiaot theimportanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT wangc importanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT jiex importanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT qiuy importanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT zhaoy importanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT almegrenha importanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT alshihris importanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT edwardspp importanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane
AT xiaot importanceofinnercavityspacewithinnisio2nanocapsulecatalystsforexcellentcokingresistanceinthehighspacevelocitydryreformingofmethane