A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
المؤلفون الرئيسيون: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Journal of Machine Learning Research
2024
|
مواد مشابهة
-
Causal inference via Kernel deviance measures
حسب: Mitrovic, J, وآخرون
منشور في: (2018) -
Differentiable causal backdoor discovery
حسب: Gultchin, L, وآخرون
منشور في: (2020) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
حسب: Ton, J-F, وآخرون
منشور في: (2021) -
An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
حسب: Hang Su, وآخرون
منشور في: (2023-12-01) -
Selection, ignorability and challenges with causal fairness
حسب: Fawkes, J, وآخرون
منشور في: (2022)