A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
Hauptverfasser: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Journal of Machine Learning Research
2024
|
Ähnliche Einträge
-
Causal inference via Kernel deviance measures
von: Mitrovic, J, et al.
Veröffentlicht: (2018) -
Differentiable causal backdoor discovery
von: Gultchin, L, et al.
Veröffentlicht: (2020) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
von: Ton, J-F, et al.
Veröffentlicht: (2021) -
An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
von: Hang Su, et al.
Veröffentlicht: (2023-12-01) -
Selection, ignorability and challenges with causal fairness
von: Fawkes, J, et al.
Veröffentlicht: (2022)