A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
Auteurs principaux: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Journal of Machine Learning Research
2024
|
Documents similaires
-
Causal inference via Kernel deviance measures
par: Mitrovic, J, et autres
Publié: (2018) -
Differentiable causal backdoor discovery
par: Gultchin, L, et autres
Publié: (2020) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
par: Ton, J-F, et autres
Publié: (2021) -
An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
par: Hang Su, et autres
Publié: (2023-12-01) -
Selection, ignorability and challenges with causal fairness
par: Fawkes, J, et autres
Publié: (2022)