A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
Autori principali: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
Journal of Machine Learning Research
2024
|
Documenti analoghi
Documenti analoghi
-
Causal inference via Kernel deviance measures
di: Mitrovic, J, et al.
Pubblicazione: (2018) -
Differentiable causal backdoor discovery
di: Gultchin, L, et al.
Pubblicazione: (2020) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
di: Ton, J-F, et al.
Pubblicazione: (2021) -
An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
di: Hang Su, et al.
Pubblicazione: (2023-12-01) -
Selection, ignorability and challenges with causal fairness
di: Fawkes, J, et al.
Pubblicazione: (2022)