A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
主要な著者: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Journal of Machine Learning Research
2024
|
類似資料
-
Causal inference via Kernel deviance measures
著者:: Mitrovic, J, 等
出版事項: (2018) -
Differentiable causal backdoor discovery
著者:: Gultchin, L, 等
出版事項: (2020) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
著者:: Ton, J-F, 等
出版事項: (2021) -
An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
著者:: Hang Su, 等
出版事項: (2023-12-01) -
Selection, ignorability and challenges with causal fairness
著者:: Fawkes, J, 等
出版事項: (2022)