A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
Үндсэн зохиолчид: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Journal of Machine Learning Research
2024
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Causal inference via Kernel deviance measures
-н: Mitrovic, J, зэрэг
Хэвлэсэн: (2018) -
Differentiable causal backdoor discovery
-н: Gultchin, L, зэрэг
Хэвлэсэн: (2020) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
-н: Ton, J-F, зэрэг
Хэвлэсэн: (2021) -
An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
-н: Hang Su, зэрэг
Хэвлэсэн: (2023-12-01) -
Selection, ignorability and challenges with causal fairness
-н: Fawkes, J, зэрэг
Хэвлэсэн: (2022)