A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
Main Authors: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Journal of Machine Learning Research
2024
|
Registos relacionados
-
Causal inference via Kernel deviance measures
Por: Mitrovic, J, et al.
Publicado em: (2018) -
Differentiable causal backdoor discovery
Por: Gultchin, L, et al.
Publicado em: (2020) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
Por: Ton, J-F, et al.
Publicado em: (2021) -
An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
Por: Hang Su, et al.
Publicado em: (2023-12-01) -
Selection, ignorability and challenges with causal fairness
Por: Fawkes, J, et al.
Publicado em: (2022)