A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
Main Authors: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
Format: | Journal article |
Jezik: | English |
Izdano: |
Journal of Machine Learning Research
2024
|
Podobne knjige/članki
-
Causal inference via Kernel deviance measures
od: Mitrovic, J, et al.
Izdano: (2018) -
Differentiable causal backdoor discovery
od: Gultchin, L, et al.
Izdano: (2020) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
od: Ton, J-F, et al.
Izdano: (2021) -
An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
od: Hang Su, et al.
Izdano: (2023-12-01) -
Selection, ignorability and challenges with causal fairness
od: Fawkes, J, et al.
Izdano: (2022)