A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
Asıl Yazarlar: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Journal of Machine Learning Research
2024
|
Benzer Materyaller
-
Causal inference via Kernel deviance measures
Yazar:: Mitrovic, J, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Differentiable causal backdoor discovery
Yazar:: Gultchin, L, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
Yazar:: Ton, J-F, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
Yazar:: Hang Su, ve diğerleri
Baskı/Yayın Bilgisi: (2023-12-01) -
Selection, ignorability and challenges with causal fairness
Yazar:: Fawkes, J, ve diğerleri
Baskı/Yayın Bilgisi: (2022)