A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
Những tác giả chính: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Journal of Machine Learning Research
2024
|
Những quyển sách tương tự
-
Causal inference via Kernel deviance measures
Bằng: Mitrovic, J, et al.
Được phát hành: (2018) -
Differentiable causal backdoor discovery
Bằng: Gultchin, L, et al.
Được phát hành: (2020) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
Bằng: Ton, J-F, et al.
Được phát hành: (2021) -
An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment
Bằng: Hang Su, et al.
Được phát hành: (2023-12-01) -
Selection, ignorability and challenges with causal fairness
Bằng: Fawkes, J, et al.
Được phát hành: (2022)