IgG responses to porins and lipopolysaccharide within an outer membrane-based vaccine against nontyphoidal salmonella develop at discordant rates
Antibodies acquired after vaccination or natural infection with Gram-negative bacteria, such as invasive Salmonella enterica serovar Typhimurium, can protect against disease. Immunization with naturally shed outer membrane vesicles from Gram-negative bacteria is being studied for its potential to pr...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Journal article |
Language: | English |
Published: |
American Society for Microbiology
2018
|
_version_ | 1797085675039752192 |
---|---|
author | Schager, A Dominguez-Medina, C Necchi, F Micoli, F Goh, Y Goodall, M Flores-Langarica, A Bobat, S Cook, C Arcuri, M Marini, A King, L Morris, F Anderson, G Toellner, K Henderson, I López-Macías, C Maclennan, C Cunningham, A |
author2 | Bachmann, M |
author_facet | Bachmann, M Schager, A Dominguez-Medina, C Necchi, F Micoli, F Goh, Y Goodall, M Flores-Langarica, A Bobat, S Cook, C Arcuri, M Marini, A King, L Morris, F Anderson, G Toellner, K Henderson, I López-Macías, C Maclennan, C Cunningham, A |
author_sort | Schager, A |
collection | OXFORD |
description | Antibodies acquired after vaccination or natural infection with Gram-negative bacteria, such as invasive Salmonella enterica serovar Typhimurium, can protect against disease. Immunization with naturally shed outer membrane vesicles from Gram-negative bacteria is being studied for its potential to protect against many infections, since antigens within vesicles maintain their natural conformation and orientation. Shedding can be enhanced through genetic modification, and the resulting particles, generalized modules for membrane antigens (GMMA), not only offer potential as vaccines but also can facilitate the study of B-cell responses to bacterial antigens. Here we show that the response to immunization with GMMA from S Typhimurium (STmGMMA) provides B-cell-dependent protection and induces antibodies to two immunodominant antigens, lipopolysaccharide (LPS) and porins. Antibodies to LPS O antigen (O-Ag) markedly enhance protection in the spleen, but this effect is less marked in the liver. Strikingly, IgG responses to LPS and porins develop with distinct kinetics. In the first week after immunization, there is a dramatic T-cell-independent B1b-cell-associated induction of all IgG isotypes, except IgG1, to porins but not to LPS. In contrast, production of IgG1 to either antigen was delayed and T cell dependent. Nevertheless, after 1 month, cells in the bone marrow secreting IgG against porins or LPS were present at a similar frequency. Unexpectedly, immunization with O-Ag-deficient STmGMMA did not substantially enhance the anti-porin response. Therefore, IgG switching to all antigens does not develop synchronously within the same complex and so the rate of IgG switching to a single component does not necessarily reflect its frequency within the antigenic complex.IMPORTANCE Vaccines save millions of lives, yet for some infections there are none. This includes some types of Salmonella infections, killing hundreds of thousands of people annually. We show how a new type of vaccine, called GMMA, that is made from blebs shed from the Salmonella cell wall, works to protect against infection in mice by inducing host proteins (antibodies) specifically recognizing bacterial components (antigens). The rate of development of IgG antibody to antigens within GMMA occurred with different kinetics. However, the antibody response to GMMA persists and is likely to provide prolonged protection for those who need it. These results help show how antibody responses to bacterial antigens develop and how vaccines like GMMA can work and help prevent infection. |
first_indexed | 2024-03-07T02:11:46Z |
format | Journal article |
id | oxford-uuid:a0e881bd-541d-460a-b54d-45c70bd59f94 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T02:11:46Z |
publishDate | 2018 |
publisher | American Society for Microbiology |
record_format | dspace |
spelling | oxford-uuid:a0e881bd-541d-460a-b54d-45c70bd59f942022-03-27T02:09:02ZIgG responses to porins and lipopolysaccharide within an outer membrane-based vaccine against nontyphoidal salmonella develop at discordant ratesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a0e881bd-541d-460a-b54d-45c70bd59f94EnglishSymplectic Elements at OxfordAmerican Society for Microbiology2018Schager, ADominguez-Medina, CNecchi, FMicoli, FGoh, YGoodall, MFlores-Langarica, ABobat, SCook, CArcuri, MMarini, AKing, LMorris, FAnderson, GToellner, KHenderson, ILópez-Macías, CMaclennan, CCunningham, ABachmann, MKaufmann, SAntibodies acquired after vaccination or natural infection with Gram-negative bacteria, such as invasive Salmonella enterica serovar Typhimurium, can protect against disease. Immunization with naturally shed outer membrane vesicles from Gram-negative bacteria is being studied for its potential to protect against many infections, since antigens within vesicles maintain their natural conformation and orientation. Shedding can be enhanced through genetic modification, and the resulting particles, generalized modules for membrane antigens (GMMA), not only offer potential as vaccines but also can facilitate the study of B-cell responses to bacterial antigens. Here we show that the response to immunization with GMMA from S Typhimurium (STmGMMA) provides B-cell-dependent protection and induces antibodies to two immunodominant antigens, lipopolysaccharide (LPS) and porins. Antibodies to LPS O antigen (O-Ag) markedly enhance protection in the spleen, but this effect is less marked in the liver. Strikingly, IgG responses to LPS and porins develop with distinct kinetics. In the first week after immunization, there is a dramatic T-cell-independent B1b-cell-associated induction of all IgG isotypes, except IgG1, to porins but not to LPS. In contrast, production of IgG1 to either antigen was delayed and T cell dependent. Nevertheless, after 1 month, cells in the bone marrow secreting IgG against porins or LPS were present at a similar frequency. Unexpectedly, immunization with O-Ag-deficient STmGMMA did not substantially enhance the anti-porin response. Therefore, IgG switching to all antigens does not develop synchronously within the same complex and so the rate of IgG switching to a single component does not necessarily reflect its frequency within the antigenic complex.IMPORTANCE Vaccines save millions of lives, yet for some infections there are none. This includes some types of Salmonella infections, killing hundreds of thousands of people annually. We show how a new type of vaccine, called GMMA, that is made from blebs shed from the Salmonella cell wall, works to protect against infection in mice by inducing host proteins (antibodies) specifically recognizing bacterial components (antigens). The rate of development of IgG antibody to antigens within GMMA occurred with different kinetics. However, the antibody response to GMMA persists and is likely to provide prolonged protection for those who need it. These results help show how antibody responses to bacterial antigens develop and how vaccines like GMMA can work and help prevent infection. |
spellingShingle | Schager, A Dominguez-Medina, C Necchi, F Micoli, F Goh, Y Goodall, M Flores-Langarica, A Bobat, S Cook, C Arcuri, M Marini, A King, L Morris, F Anderson, G Toellner, K Henderson, I López-Macías, C Maclennan, C Cunningham, A IgG responses to porins and lipopolysaccharide within an outer membrane-based vaccine against nontyphoidal salmonella develop at discordant rates |
title | IgG responses to porins and lipopolysaccharide within an outer membrane-based vaccine against nontyphoidal salmonella develop at discordant rates |
title_full | IgG responses to porins and lipopolysaccharide within an outer membrane-based vaccine against nontyphoidal salmonella develop at discordant rates |
title_fullStr | IgG responses to porins and lipopolysaccharide within an outer membrane-based vaccine against nontyphoidal salmonella develop at discordant rates |
title_full_unstemmed | IgG responses to porins and lipopolysaccharide within an outer membrane-based vaccine against nontyphoidal salmonella develop at discordant rates |
title_short | IgG responses to porins and lipopolysaccharide within an outer membrane-based vaccine against nontyphoidal salmonella develop at discordant rates |
title_sort | igg responses to porins and lipopolysaccharide within an outer membrane based vaccine against nontyphoidal salmonella develop at discordant rates |
work_keys_str_mv | AT schagera iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT dominguezmedinac iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT necchif iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT micolif iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT gohy iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT goodallm iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT floreslangaricaa iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT bobats iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT cookc iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT arcurim iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT marinia iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT kingl iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT morrisf iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT andersong iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT toellnerk iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT hendersoni iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT lopezmaciasc iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT maclennanc iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates AT cunninghama iggresponsestoporinsandlipopolysaccharidewithinanoutermembranebasedvaccineagainstnontyphoidalsalmonelladevelopatdiscordantrates |