On the correspondence between monotonic max-sum GNNs and datalog
Although there has been significant interest in applying machine learning techniques to structured data, the expressivity (i.e., a description of what can be learned) of such techniques is still poorly understood. In this paper, we study data transformations based on graph neural networks (GNNs). Fi...
主要な著者: | Tena Cucala, D, Cuenca Grau, B, Motik, B, Kostylev, EV |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Association for Computing Machinery
2023
|
類似資料
-
On the correspondence between monotonic max-sum GNNs and Datalog
著者:: Tena Cucala, D, 等
出版事項: (2023) -
Bridging max graph neural networks and datalog with negation
著者:: Tena Cucala, D, 等
出版事項: (2024) -
DatalogMTL with negation under stable models semantics
著者:: Wałęga, PA, 等
出版事項: (2021) -
Stratified negation in datalog with metric temporal operators
著者:: Tena Cucala, D, 等
出版事項: (2021) -
The stable model semantics of datalog with metric temporal operators
著者:: Walega, P, 等
出版事項: (2023)