Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas
In simulations of a 12.5 PW laser (focussed intensity I = 4 × 10 23 Wcm - 2) striking a solid aluminum target, 10% of the laser energy is converted to gamma-rays. A dense electron-positron plasma is generated with a maximum density of 10 26 m - 3, seven orders of magnitude denser than pure e- e+ pla...
Main Authors: | , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2013
|
Summary: | In simulations of a 12.5 PW laser (focussed intensity I = 4 × 10 23 Wcm - 2) striking a solid aluminum target, 10% of the laser energy is converted to gamma-rays. A dense electron-positron plasma is generated with a maximum density of 10 26 m - 3, seven orders of magnitude denser than pure e- e+ plasmas generated with 1PW lasers. When the laser power is increased to 320 PW (I = 10 25 Wcm - 2), 40% of the laser energy is converted to gamma-ray photons and 10% to electron-positron pairs. In both cases, there is strong feedback between the QED emission processes and the plasma physics, the defining feature of the new "QED-plasma" regime reached in these interactions. © 2013 AIP Publishing LLC. |
---|