Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas

In simulations of a 12.5 PW laser (focussed intensity I = 4 × 10 23 Wcm - 2) striking a solid aluminum target, 10% of the laser energy is converted to gamma-rays. A dense electron-positron plasma is generated with a maximum density of 10 26 m - 3, seven orders of magnitude denser than pure e- e+ pla...

詳細記述

書誌詳細
主要な著者: Ridgers, C, Brady, C, Duclous, R, Kirk, J, Bennett, K, Arber, T, Bell, A
フォーマット: Journal article
言語:English
出版事項: 2013
その他の書誌記述
要約:In simulations of a 12.5 PW laser (focussed intensity I = 4 × 10 23 Wcm - 2) striking a solid aluminum target, 10% of the laser energy is converted to gamma-rays. A dense electron-positron plasma is generated with a maximum density of 10 26 m - 3, seven orders of magnitude denser than pure e- e+ plasmas generated with 1PW lasers. When the laser power is increased to 320 PW (I = 10 25 Wcm - 2), 40% of the laser energy is converted to gamma-ray photons and 10% to electron-positron pairs. In both cases, there is strong feedback between the QED emission processes and the plasma physics, the defining feature of the new "QED-plasma" regime reached in these interactions. © 2013 AIP Publishing LLC.