Flat Littlewood polynomials exist

We show that there exist absolute constants Δ>𝛿>0 such that, for all 𝑛≥2, there exists a polynomial 𝑃 of degree 𝑛, with coefficients in {−1,1}, such that 𝛿𝑛√≤|𝑃(𝑧)|≤Δ𝑛√ for all 𝑧∈ℂ with |𝑧|=1. This confirms a conjecture of Littlewood from 1966....

Full description

Bibliographic Details
Main Authors: Balister, P, Bollobás, B, Morris, R, Sahasrabudhe, J, Tiba, M
Format: Journal article
Language:English
Published: Mathematical Sciences Publishers 2020
_version_ 1797085732069703680
author Balister, P
Bollobás, B
Morris, R
Sahasrabudhe, J
Tiba, M
author_facet Balister, P
Bollobás, B
Morris, R
Sahasrabudhe, J
Tiba, M
author_sort Balister, P
collection OXFORD
description We show that there exist absolute constants Δ>𝛿>0 such that, for all 𝑛≥2, there exists a polynomial 𝑃 of degree 𝑛, with coefficients in {−1,1}, such that 𝛿𝑛√≤|𝑃(𝑧)|≤Δ𝑛√ for all 𝑧∈ℂ with |𝑧|=1. This confirms a conjecture of Littlewood from 1966.
first_indexed 2024-03-07T02:12:07Z
format Journal article
id oxford-uuid:a101bce7-f2e3-4ce1-8e0e-42f646b8b0d5
institution University of Oxford
language English
last_indexed 2024-03-07T02:12:07Z
publishDate 2020
publisher Mathematical Sciences Publishers
record_format dspace
spelling oxford-uuid:a101bce7-f2e3-4ce1-8e0e-42f646b8b0d52022-03-27T02:09:55ZFlat Littlewood polynomials existJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a101bce7-f2e3-4ce1-8e0e-42f646b8b0d5EnglishSymplectic ElementsMathematical Sciences Publishers 2020Balister, PBollobás, BMorris, RSahasrabudhe, JTiba, MWe show that there exist absolute constants Δ>𝛿>0 such that, for all 𝑛≥2, there exists a polynomial 𝑃 of degree 𝑛, with coefficients in {−1,1}, such that 𝛿𝑛√≤|𝑃(𝑧)|≤Δ𝑛√ for all 𝑧∈ℂ with |𝑧|=1. This confirms a conjecture of Littlewood from 1966.
spellingShingle Balister, P
Bollobás, B
Morris, R
Sahasrabudhe, J
Tiba, M
Flat Littlewood polynomials exist
title Flat Littlewood polynomials exist
title_full Flat Littlewood polynomials exist
title_fullStr Flat Littlewood polynomials exist
title_full_unstemmed Flat Littlewood polynomials exist
title_short Flat Littlewood polynomials exist
title_sort flat littlewood polynomials exist
work_keys_str_mv AT balisterp flatlittlewoodpolynomialsexist
AT bollobasb flatlittlewoodpolynomialsexist
AT morrisr flatlittlewoodpolynomialsexist
AT sahasrabudhej flatlittlewoodpolynomialsexist
AT tibam flatlittlewoodpolynomialsexist