Extremal rank-one convex integrands and a conjecture of Šverák
We show that, in order to decide whether a given probability measure is laminate, it is enough to verify Jensen’s inequality in the class of extremal non-negative rank-one convex integrands. We also identify a subclass of these extremal integrands, consisting of truncated minors, thus proving a conj...
Täydet tiedot
Bibliografiset tiedot
Päätekijä: |
Guerra, A |
Aineistotyyppi: | Journal article
|
Kieli: | English |
Julkaistu: |
Springer Verlag
2019
|