Extremal rank-one convex integrands and a conjecture of Šverák

We show that, in order to decide whether a given probability measure is laminate, it is enough to verify Jensen’s inequality in the class of extremal non-negative rank-one convex integrands. We also identify a subclass of these extremal integrands, consisting of truncated minors, thus proving a conj...

תיאור מלא

מידע ביבליוגרפי
מחבר ראשי: Guerra, A
פורמט: Journal article
שפה:English
יצא לאור: Springer Verlag 2019
תיאור
סיכום:We show that, in order to decide whether a given probability measure is laminate, it is enough to verify Jensen’s inequality in the class of extremal non-negative rank-one convex integrands. We also identify a subclass of these extremal integrands, consisting of truncated minors, thus proving a conjecture made by Šverák (Arch Ration Mech Anal 119(4):293–300, 1992).