Extremal rank-one convex integrands and a conjecture of Šverák
We show that, in order to decide whether a given probability measure is laminate, it is enough to verify Jensen’s inequality in the class of extremal non-negative rank-one convex integrands. We also identify a subclass of these extremal integrands, consisting of truncated minors, thus proving a conj...
מחבר ראשי: | |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Springer Verlag
2019
|
סיכום: | We show that, in order to decide whether a given probability measure is laminate, it is enough to verify Jensen’s inequality in the class of extremal non-negative rank-one convex integrands. We also identify a subclass of these extremal integrands, consisting of truncated minors, thus proving a conjecture made by Šverák (Arch Ration Mech Anal 119(4):293–300, 1992). |
---|