Extremal rank-one convex integrands and a conjecture of Šverák

We show that, in order to decide whether a given probability measure is laminate, it is enough to verify Jensen’s inequality in the class of extremal non-negative rank-one convex integrands. We also identify a subclass of these extremal integrands, consisting of truncated minors, thus proving a conj...

Description complète

Détails bibliographiques
Auteur principal: Guerra, A
Format: Journal article
Langue:English
Publié: Springer Verlag 2019
_version_ 1826307466421338112
author Guerra, A
author_facet Guerra, A
author_sort Guerra, A
collection OXFORD
description We show that, in order to decide whether a given probability measure is laminate, it is enough to verify Jensen’s inequality in the class of extremal non-negative rank-one convex integrands. We also identify a subclass of these extremal integrands, consisting of truncated minors, thus proving a conjecture made by Šverák (Arch Ration Mech Anal 119(4):293–300, 1992).
first_indexed 2024-03-07T07:03:33Z
format Journal article
id oxford-uuid:a19118a5-3f74-4a46-b7f5-a8e60b020fae
institution University of Oxford
language English
last_indexed 2024-03-07T07:03:33Z
publishDate 2019
publisher Springer Verlag
record_format dspace
spelling oxford-uuid:a19118a5-3f74-4a46-b7f5-a8e60b020fae2022-04-07T11:30:51ZExtremal rank-one convex integrands and a conjecture of ŠverákJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:a19118a5-3f74-4a46-b7f5-a8e60b020faeEnglishSymplectic Elements at OxfordSpringer Verlag2019Guerra, AWe show that, in order to decide whether a given probability measure is laminate, it is enough to verify Jensen’s inequality in the class of extremal non-negative rank-one convex integrands. We also identify a subclass of these extremal integrands, consisting of truncated minors, thus proving a conjecture made by Šverák (Arch Ration Mech Anal 119(4):293–300, 1992).
spellingShingle Guerra, A
Extremal rank-one convex integrands and a conjecture of Šverák
title Extremal rank-one convex integrands and a conjecture of Šverák
title_full Extremal rank-one convex integrands and a conjecture of Šverák
title_fullStr Extremal rank-one convex integrands and a conjecture of Šverák
title_full_unstemmed Extremal rank-one convex integrands and a conjecture of Šverák
title_short Extremal rank-one convex integrands and a conjecture of Šverák
title_sort extremal rank one convex integrands and a conjecture of sverak
work_keys_str_mv AT guerraa extremalrankoneconvexintegrandsandaconjectureofsverak