Extremal rank-one convex integrands and a conjecture of Šverák
We show that, in order to decide whether a given probability measure is laminate, it is enough to verify Jensen’s inequality in the class of extremal non-negative rank-one convex integrands. We also identify a subclass of these extremal integrands, consisting of truncated minors, thus proving a conj...
Главный автор: | Guerra, A |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Springer Verlag
2019
|
Схожие документы
-
Automatic quasiconvexity of homogeneous isotropic rank-one convex integrands
по: Guerra, A, и др.
Опубликовано: (2022) -
Reiterated periodic homogenization of integral functionals with convex and nonstandard growth integrands
по: Joel Fotso Tachago, и др.
Опубликовано: (2021-02-01) -
The all-loop conjecture for integrands of reggeon amplitudes in N=4 $$ \mathcal{N}=4 $$ SYM
по: A. E. Bolshov, и др.
Опубликовано: (2018-06-01) -
Ambitwistor integrands from tensionless chiral superstring integrands
по: Nikhil Kalyanapuram
Опубликовано: (2021-10-01) -
One-loop integrand from generalised scattering equations
по: Md. Abhishek, и др.
Опубликовано: (2021-05-01)