Extremal rank-one convex integrands and a conjecture of Šverák

We show that, in order to decide whether a given probability measure is laminate, it is enough to verify Jensen’s inequality in the class of extremal non-negative rank-one convex integrands. We also identify a subclass of these extremal integrands, consisting of truncated minors, thus proving a conj...

全面介绍

书目详细资料
主要作者: Guerra, A
格式: Journal article
语言:English
出版: Springer Verlag 2019

相似书籍