On pathwise quadratic variation for càdlàg functions

We revisit Föllmer’s concept of quadratic variation of a càdlàg function along a sequence of time partitions and discuss its relation with the Skorokhod topology. We show that in order to obtain a robust notion of pathwise quadratic variation applicable to sample paths of càdlàg processes, one must...

Full description

Bibliographic Details
Main Authors: Chiu, H, Cont, R
Format: Journal article
Published: Institute of Mathematical Statistics 2018
Description
Summary:We revisit Föllmer’s concept of quadratic variation of a càdlàg function along a sequence of time partitions and discuss its relation with the Skorokhod topology. We show that in order to obtain a robust notion of pathwise quadratic variation applicable to sample paths of càdlàg processes, one must reformulate the definition of pathwise quadratic variation as a limit in Skorokhod topology of discrete approximations along the partition. One then obtains a simpler definition which implies the Lebesgue decomposition of the pathwise quadratic variation as a result, rather than requiring it as an extra condition.